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The dynamics of a body with cavities completely or partially filled with fluid (in most 
cases an ideal fluid) is the subject of many papers. the first of which was by Zhukovskii 
[l]. Surveys of the principal approaches and results will be found in monographs r2. 31. 
In dealing with the collision problem the fluids are usually assumed to be ideal. This 
assumption is valid for fluids which must be considered viscous under ordinary conditions, 

since very large forces develop during collision. On the other hand, if the obstacle with 

which the body collides has a finite elasticity, then allowance for viscosity is necessary. 
The present paper concerns the effect of viscosity on the interaction of a body with an 

obstacle, our formulation here is the same as that used in [43. For simplicity we shall 
consider the case of motion of a body which can be described by means of a single gene- 

ralized coordinate. 

1. Let a rigid body containing a cavity C? of arbitrary shape completely filled with 

a viscous incompressible fluid rotate about a fixed axis and collide with an obstacle at 
the instant t = 0 , If M (9, t) is the moment of the forces exerted by the obstacle on 

the body, J the moment of inertia of the body, T the angle of rotation and N (tf the 
moment of the forces exerted on the body by the fluid, then the equation of motion of 
the body in the period 0 < t < At during which the body is in contact with the obstacle 

is of the form 
J -$$ - M (cp, t) = N (‘) (f.1) 

In the case of an absolutely elastic obstacle we can set nil(cp, t) -= - kv, where h- = 
: const. 

We know (e.g. see I”]) that the motion of a viscous fluid is described by the following 
system of equations : Bu - 

ot 
_i- c&v/t = x _- i grad p + v~%, div u = 0 (1.2) 

Here u is the velocity, tb , Y , p the density, viscosity, and pressure of the fluid, respec- 
tively, and x the external body forces. Since the collision occurs within a small time 

interval At , since the displacements of the body and fluid particles in this interval are 
small, and since the forces acting are large, we can neglect the ordinary forces X and 

set (uV)u = 0 (equality of the convective terms to zero [5]). To solve the problem of 
motion of the body-fluid system we must solve Eqs. (1.1),(1.2) simultaneously under 
the no-slip conditions (the velocity of the fluid at the boundary of the cavity is equal 
to that of the points of the boundary) and a certain initial condition (for a given fluid 
velocity field and a given velocity of the body at t = 0). 

In the case of a linear function M (q, t) we can use the Duhamel principle; to find 
fif((t) under zero initial conditions we only need to know the solution of the problem of 

motion of the fIuid initially at rest upon instantaneous acceleration of the body to the 
constant angular velocity c@ / & [4] (Problem 1). Let L (t) be the moment of forces 
exerted on the body by the fluid. Then 
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t 
N(t)= L!Y.$ s L(t-r)dt (1.3) 

0 

The problem with zero initial conditions therefore reduces to the solution of integro- 

differential equation (1.1). Examples of its solution can be found in [4, 61. To solve 

the general problem we must also solve the hydrodynamic problem of decay of the spe- 
cified velocity field as the body comes to rest (Problem P), calculate the corresponding 

moment of forces L,, (t) , and add it to T, (t) in (1.3). 
Let a body rotating at some velocity ~1 and containing a fluid with a given velocity 

field at t = 0 be brought to rest instantaneously, Since w > 0 and v < OC, there exists 
a small to such that the fluid behaves as an ideal fluid for all t from the interval 

0 < t < to , The resulting velocity field decays m the subsequent instants. This behav- 
ior of the solutions is due to the fact that the equations of motion of the fluid combine 

certain properties of elliptic and parabolic equations. In the case of an elastic collision, 
the character of the latter depends essentially on the relationship between the elasticity 
and viscosity coefficients. For very large coefficients of elasticity the instant of detach- 
ment of the body from the obstacle ( At < to) and the effective moment of momentum 

of the fluid after detachment are smaller than in the case of a solidified fluid [l] and 
energy is lost through dissipation. For smaller values of the coefficient of elasticity the 
viscosity is important during the actual collision ; for At 9 t, the fluid behaves almost 
as a solid, and energy dissipation is slight (as in the case considered in 143 f. 

The fluid pressure p which must be known in order to compute N (t) must be deter- 

mined from formula (1. ‘L) (provided the velocity field is known). In the simplest case 
of collision of a nonrotating body there is no relative motion of the Auid [l] and the 
viscosity, provided it is finite, is of no significance. Equation (I, ‘2) then degenerates into 

!$+radP 

from which we see that grad p = f (t) and the pressure distribution is purely gyrostatic. 

The function f (t) must be determined by solving the problem of the interaction of an 

absolutely rigid body with an elastic obstacle. 

2. In this section we consider the decay of the fluid velocity field uponsudden coming 
to rest of the body, i. e. the case of interaction with an ideally inelastic obstacle (Prob- 
lem 2) and describe a procedure for solving the problem. We note that Problem 1 is 
reducible to a special case of Problem 2. In subsequent sections we shall consider spe- 
cific examples and results. For simplicity, let us consider the two-dimensional case (the 
axisymmetric case can be analyzed in completely analogous fashion). Making use of 
(1.2), we set aJ! a* 

u==-Z, 
z,= - dx (2.i) 

Substituting these expressions into (1. ;L) and recalling the simplifications of this equa- 
tion noted in Sect. 1, we obtain z)VZ$ 

- = vv%$ dt 
(2.2) 

Since the body is at rest for t > 0, it follows that the boundary and initial conditions 

* It=, = $0 (% Y) (X3} 

must be fulfilled. 
21’ 1s = 2 Is = 0, 

Here n is the direction of the normal to the boundary S of the cavity ; -I& (z, IJ) is a 
given function. It is important to note that q. is not arbitrary, but describes the velocity 
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field which arises in the fluid after the body has come to rest. It can be found by solving 
the problem of motion of an ideal fluid, which reduces to the solution of the Neumann 

problem. 
The solution of problem (2.2)” (2.3) is obtainable in the form of a Fourier series, 

(2.5) 

where xk are the eigenfunctions of the equation 
VhXk i- h, VQ = 0 (2.5) 

Problems of this type occur in the theroy of elasticity 173. Thus, we already have proofs 
of the co~tabili~ of the X,, of their positiveness, and of the completeness of the system 

of functions Xk ; we also have methods for finding the hk and &. For example, we can 

use the &tz method to solve the above problem. The conditions of solvability of prob- 

lem (2.2), (2.3) are also considered in [S], Analytical methods are applicable only in 
those cases where the trajectories of the fluid particles remain constant in space, so that 

(2.5) reduces to a second-order equation (e. g. see [6] ). Having found the hk and Xr , 
we need merely use (2.4) to find the cl; as the coefficients of the Fourier expansion of 

Fig. 1 

an equation for 10 

the function qO. 

3. Let the cavity be rectangular with a length/width ratio 
6 / e (Fig. 1) and let the fluid rotate together with the body at 
the constant angular velocity w prior to collision (this is the 

simplest and most important case). The body comes to a stop 
at the instant t = 0, In attempting to find &, (2, Y) it is con- 

venient to consider the motion of the fluid in a coordinate sys- 
tem rotating at the angular velocity o. The relative equations 

of motion are of the form [5] 
f3U' -_-_24L.-__+& 8V' I 

at atfZou’= -$$- (3.1) 

where the primed letters denote the values of the corresponding 

quantities in the relative coordinate system. The continuity 
equation remains unchanged in form. Eliminating p’ and intro- 

ducing 4’ by means of formulas analogous to (2.1). we obtain 

pa*’ = 0 (3.2) 

The coming to rest of the body at t = 0 is equivalent in the relative coordinate system 
to the body being instantaneously set in motion from the rest state at the angular velo- 

city -0 . The boundary conditions (Fig. 1) are therefore as follows : 

w w W’ w --- =-- 
aY I (3.3) 

r=o aY I x=-a --@Y* x I/=*=az y=_b==-Ox 

Integration over the contour S reduces problem (3.2). (3.3) to the Dirichlet problem. 
In fact, if we assume that Ip’ (4, b) = 0, the appropriate computations yield 

Q’ (a, Y) = 9’ (- u, Y) = - l/s 0 (YZ - @) 
(3.4) 

9’ (2, 6) = 9 (G -&) = - ‘ia 0 (39 - 0~) 

We can attempt to find the solution of problem (3. P), (3.4) in the form 



Collision with an obstacle of a body containing a visoous fluid 879 

(3.5) 

CI’ (5, y) zz jj [a eh (Zn ---*) n y cos (2n ---‘) n x + B, cos (2n --&I) is y ch(2n --;) ? x] 
n=r 

Substituting (3.5) into (3.4) and integrating, we obtain the following expressions for 
A, and B,: 

A 
160~2~ (- ,)‘+l sch (2n - 1) nb 

*= (2n-l)sns 2a * 
B 

11 
= 16~@(--l)~-’ sch (2n- I)J’c~ 

(h - 1)%3 2b 

Since the absolute velocity of the fluid is equal to the sum of the relative and trans- 
lational velocities, we can write 

*o (x* Y) - $I$_ 9’, $1 (Z, tt)=r/,o (22 5 $2) (3.6) 

Here $I(% U) is the function describing rotation at the angular velocity w . Thus, the 
first part of Problem ‘2 has been solved, 

We can find the h, and Xk by the Ritz method. Since the function qgo (5, I/) is sym- 
metric, we can find an approximate expression for X in the form fl] 

I- - (~2 - at)2 (y2 - b2)a (al + u2x2 -I- c@) (3.7) 

where QR are unknown coefficients. Determination of the eigenvalues reduces to finding 
the minimum of the functional [7] 

s to”X)” dQ 
R 

under conditions (2.3) and the additional condition 

(3.6) 

This brings us to the determination of the values of hr. for which the system 

i =k I(o”q,, VT,,,) - jl (vqk, VT,)] = 6 (m = 1,2,3) 
h=l 

(3.9) 

has a nontrivial solution. Here the parentheses enclose the scalar products of the corre- 
sponding functions, i.e. the integrals of their products over the domain 62. The equality 
to zero of the determinant of system (3.9) impiies a cubic equation in h. Its solution 
yields the following values for the first eigenvalue : & = 2.30 I b2 for a =- b, h, = 

= 9.50 / ba for a -7 2b and 5 + 10.1. / be for a -f 0~. 

The system of functions Xk is complete in the space with norm (3,8), and the familiar 
theorems [7] imply its completeness in the sense of convergence in the mean, Let a = 

= 2b. Substitution of &into system (3.9) yields an approximate formula for X1, 

xl = b-l1 (z2 - at)% (ya - b2)a (0.017bz - 0.0252’ - 3/s) (3.10) 

In the last stage of decay, when the first term in (P. 4) is dominant, the solution (as 
can be shown by computing the first Fourier coefficient) is of the form 

9 = - 0.5SwbsX1 (z, I/) exp (- 9.5vt / b2) 

4, As a further example let us consider the following problem. A plane of mass m 

per unit area supervened by a layer of viscous fluid of thickness ia which initially moves 

at the same velocity as the plane collides with an elastic obstacle at the instant t = 0 ; 
the force acting per unit area of the plane is F (t). We are to determine the motion of 
the plane after the collision. This example can serve as a model of the problem of 
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collision of a rotating body containing a fluid in an annular gap. 
Equation (1.1) in this case becomes t 

(4.1) 

where the x-axis lies along the direction of motion. To determine ci (t) we must solve 

the hydrodynamic problem of finding the fluid velocity field when the plane is instan- 
taneously set in motion at a constant velocity,i.e. we must find the function u (g, 2) 
satisfying the equation au 8% 

---Ye at - ay2 (G.‘) 

under the boundary and initial conditions 

au @, tf ~ = 0 (t >, O), 
a!/ 

u (0, t) = 1 (t > O), u (y, 0) = 0 (4.3) 

Then u (t) = CL 8ulay lyzO. Solution of the hydrodynamic problem in this case yields 
second-order equation (4.2) instead of (12.2). since continuity equation (1.3) is satisfied 

trivially. If u (y, t) is the solution of the formulated problem, then v = 1 - u (Y, i) 

represents the solution of the problem of decay of the velocity field under the conditions 
av(h,t) 

---=o(t>,q, v(o,t)=O(t>o), L.(y,O)==l 
%f 

The solution of the latter problem can also be sought in the form (2.4), where xk are 
the eigenfunctions of the equation CP& I Cay* $ h,X& = 0 

under conditions (4.4,). The computations yield the result 

X,=(2k-~)2x2~4hZ, x~~s~~f(2k-l)~~/Zh] 

To determine cf; from (2.4) we must solve the problem of expanding function (4.4) 

in a Fourier series in the functions Xk (y). The appropriate computations yield ck = 
= 4 / (212 - 1) n. Series (2.4) converges rapidly for t > o ; for t = 0 it converges rapidly 
in every closed domain lying entirely inside 51. At the boundary between the fluid and 

the wall we have the formula > 
6 (t) = $5 s exp (- hkvt) 

I;--1 

Thus, an infinite force per unit area acts at the initial instant. This singularity is 
integrable, however. 

The case of high viscosity, i, e. the case where the fluid moves almost as a solid body, 
was investigated in [4J. Let us now consider the other extreme case where the viscosity 
of the fluid during collision is negligible, i.e. where F (t) = ma.!3 (I). We assume for 
simplicity that the plane and fluid were at rest prior to collision. The general case was 
obtained by adding the translational displacement of the entire system to the flow under 
consideration; the rate of this displacement depends on the character of the collision 
(the properties of the obstacle). Substituting the function F (t) into (4.1) and dividing 
the result by mv2 1 h3, we can express the equation of motion of the plane in dimension- 

less form, 

;1= 2 exp (- q) (4.5) 

ir==l 

xl = x j h, t, - tv I h2, U1 = Uh / v, a, = ah2 j mv, x5 = h,h* 

Let us subject (4.5) to Laplace transformation, 
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X (p) = r XI (tl) e-%tl, x (0) = 0, 2’ (0) = u 
0 

Changing the order of integration in the right side yields the relation 

(4.6) 

The function X (p) has a second-order pole at p = 0 and a countable set of first- 
order poles on the negative part of the real axis. Hence, as we can see from the inverse 

Laplace ~ansformation formula, the solution x1 (tr) is of the form 
00 

k=l 

It is easy to see that W= -(al-j- a2 3- a,+ . ..) and that y& > 0. All of the constants 
in (4.7) can be determined from (4.6). For example, by computing the residue at the 
origin we obtain the formula Vk= U1 (1 + ph/m)-l which is readily obtainable from 
the conditions of conservation of momentum. 
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